
Learning to Plan in LISP

-eel John R. Anderson
Robert Farrell

Ron Sauers
Departmentof Psychology
Carnegie-Mellon U niversity

Pittsburgh, PA 15213

Approved for public release; distribution unlimited.
Reproduction In whole or in part Is permitted for any purpose

of the United States government

£ This resarch was supported by the Personnel and Training Research Program, Psychological
* ~ Services- Division, Office of 'Naval Research, under Contract No.: N00014-81-C-0335, Contract

01 Authority Identification Number, NR No.: 157-485 to John Anderson.

DTIC
eELECTL I

~ ii22 088 ~ iV29~K

ES

Best
Available

Copy

. __II____I__

• ~lnt! 1 a it R; fi ed]
SECURITY CLASSIFICATION OF THIS PA. When Oat.#Entered) ,

REPORT DOCUMEN~ITATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

: 0ONR-82-2 79# / t T ,t'7

4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD-COVERED

Learning to Plan in LISP Interim report
6. PERFORMING 04G. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(*)

John R. Anderson
Robert Farrell N00014-81-C-0335
Ron Sauers

9. PERFORMING ORGANIZATION NAME AND ADDRESS 1O. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

* Department of Psychology
Carnegie-Mellon University NR 157-465
Pittsburgh, PA 1S213

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Personnel and Training Research Programs November 1, 1982
Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 46
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

unclassified
IS&. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited
4 3

17. DISTRIBUTION STATEMENT (of the abstTer entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revye side if necessary and identify by block number) 7

production systems computer simulation knowledge compilation retrieval
programming analogy proceduralization planning
LISP working memory composition
problem-solving cognitive skill problem decomposition
goal structures skill acquisition recursion automatic programming

20. ABSTRtCT (Continue on reverse side If necessary and identify by block number)

Protocols have been gathered of the first 30 hours of the learning of
LISP. A simulation, GRAPES, has been developed that models the processes by
which subjects write LISP functions to meet problem specifications. The
GRAPES simulation is a goal-factored production system as specified in the
ACT* theory (Anderson, 1983). The results are reported of the simulations
of a number of problems and these are compared to the human protocols.
GRAPES does simulate the top-down, depth-first flow of control exhibited by

DD I 'A.., 1473 EDITION OF I NOV 65 IS OBSOLETE unclassified
SECURITY CLASSIFICATION OF THIS PAGE (1t7en Date Entered)

SECURITY CLASSIFICATION 0 sIS PAGE(Whn Data Enorod)

20) Abstract (con't)

subjects and produces code very similar to subject code. Special attention
is given to modelling student solutions by analogy, how students learn from
doing, and how failures of working memory affect the course of problem
solving.,

Accession For
* NTIS G A&I

DTIC T.'.3

By-Jui :t ri b . I

*Diktrib"t"on

Availability Codes

;A;.ail and/or r

Dist Special

* ETI%

CO~PY

'ee

SECURITY CLASSIFICATIO1W OF e PAGE(W en Date Entered)

2

1. Introduction

We have been studying how novices learn to programn in LISP. This i . ,rl of a inoro coeral rgoal of

understanding how people learn complex skills (Anderson, 1982,1983). A major part of the challenge

and interest in this is that cognitive skills have complex control structures that must be learned.

Computer programming is an excellent example of such a skill. The study of novices learning to

program in LISP quickly gets us to the core of the problem of Skill acquisition. Writing LISP functions

involves a complicated control structure and it is the kind of control structure novices have never

dealt with. Please note that "control structure" refers here to the control structures governing thev

programming behavior not control structures in the program.

1.1. The Data Base

We have looked extensively at the first 30 hou.rs cf novice programming behavior of three subjects

(SS, WC, an~d 8R). In these protocols, subjects studied a text on LISP. - S studied Siklossy (1976),

WC studied Winston (1977), and BR studied Winston & Horn (1981). We recorded their verbal

protocols, kept their paperwork, and kept a record of their terminal interactions. The individual

session varied from 45 minutes to two Rnd a half hours, depending on what seemed to be natural

units and natural breaking points. Approximately one quarter of the session time was spent reading7

and discussing the text, the other three-quarters of the time was spent doing various exercises. The -

subject worked with an experimenter who tried to do as little teaching as possible and to let the

student learn from the text. The main responsibility of the experimenter was to query the subject

about what they were thinking, why they tried various solutions, etc. However, if the subject had a-

serious misunderstanding or was lost in the problemns, the experimenter would intervene with tutorial

assistance.

We feel that we have a pretty good record of the learning that was occurring in these sessions.

Subjects were instructed not to think about LISP when they were not in the experimental session. It

seemed that it was easy for them to comply with this request. They were also not permitted to keep-

the textbook between sessions.

3p

While the 30 hour protocols from these subjects has been the major source of data for theory

constric ion, we have also looked at protcco!s frnrn these subjiects much later after they had

continued their LISP education and also looked at protocols from relatively advanced LISP

programmers. In addition, we have assigned various LISP problems to a large class learning LISP.

While we cannot get from this class source any information about the real-time problem-solving it

does provide information about the distribution of final solutions. This provides one basis tor judging

the representativeness of the solutions we see from our three subjects.

1.2. The GRAPES Simulation

We developed GRAPES (a goal-restricted production system) to model subject problem solving in

* the context of writing a LISP function to calculate an input-output specification. This pregram is an

interpreter for a set of production rules that write LISP code in a top-down manner. Each production ir

has a condition which specifies a particular programming goal and various problem specifications

The action of the production can be to embellish the problem specification, write or change LISP

code, or to set new subgoals. Representative examples of such productions are:

IF the goal is to add Listi and List2
THEN write (APPEND List1 List2)

IF the goal is to check that a recursive call to a function will terminate
and the recursive call is in the context of a MAP function

THEN set as a subgoal to establish that the list provided to the MAP function
will always become NIL after some number of recursive calls

4i We feel that the GRAPES simulations do a good job of reproducing the essential aspects of the

protocols that we observe. However, it is never the case that a perfect correspondence is obtained.

We could, of course, account for any perturbation in the data by introducing an ad hoc rule that

would produce just that perturbation. However, we constrained ourselves to rules which we felt

reasonable to suppose the subject had acquired. We hope to eventually be able to explain the

perturbations on a principled basis. However, what is described in this paper is only an

approximation to such a final theoretical account. This fits in well with the view that development of

scientific theory is an approximating series in which each subsequent theory gives a better fit to the

.. . . . i,, I I - - I II III

4

data.

1.3. Relation to ACT*IN

* The GRAPES architecture is just a specialization of the general ACT* architecture (Anderson,

* 1983) to achieve an efficient simulation of that architecture in the context of LISP programming. Like

ACT*, it involves a dichotomy between general declarative knowledge represented in the form of a.....

* semantic network and procedural knowledge represented in production form. ACT* involves a sub-

theory about how declarative facts are stored and retrieved and a sub-theory about how productions

are matched, executed, and acquired. GRAPES incorporates the procedural sub-theory but does not

incorporate the declarative sub-theory (only for reasons of efficiency and simplicity). In GRAPES

dec.1arative facts are simply stored and retrieved without error. GRAPES makes particularly heavy use

cf the ACT* proposal for using goals to guide the matching and acquisition of productions. In ACT*

behav'ior is organized hierarchically according to a set of goals such that higher-level goals

* decompo~se into lower-level goals. In ACT* it is also possible for productions to execute that respond

to the data without any goal specifications. However, to date we have not used such data-driven

Droductions in simulating LISP programming behavior.

In ACT* there are two basic mechanisms for simulating production learning. The first, knowledge0

comoilaton, involves building production system rules that summarize the essential product of the

computation of a set of rules. The second, knowledge tuning, involves adjusting the conditions of

productions to make them more appropriate in their range of application. We have implemented a

knowledge compilation mechanism within the GRAPES system and will describe its application later

in the paper. While a tuning process is also important in modelling learning to program, this has not

yet been developed in GRAPES.

1.4. Ove rview

The remainder of the paper will fall into fOUr major sections. The first three w'-ill report on three

simulation efforts. With these sections as "data", the final section will draw a set of significant

conclusions about the nature of programming in LISP and the acquisition of this skill.

2. REACHABLE IF

The first problem we would like to discuss is the REACHABLE problem, which was borrowed from

Barstow (1979). It is a problem too advanced to be attempted by any of our subjects in their first 30

hours of learning and so we only have protocols from more advanced programmers solving it. It r

serves to demonstrate the overall competence of the simulation program in terms of its ability to

simulate the solutions to relatively complex procblems. The REACHABLE problem is also interesting in

I that it tends to evoke a wide variety of different final solutions from subjects. Thus, it will serve as ar

test of whether the same GRAPES ccntrol structure is capable of explaining the variety of

* programming behavior that can be obseived.

We will look at GRAPES reproducing two rather different solutions by two subjects. The individual

* solutions and simulations contain a number ot interesting features that will serve to support some of

the conclusions in the final section of the paper. In these simulations, we set as our goal to account

* for the coding behavior of our subjects in terms of the actual lines of code they wrote. While we tried

to reproduce certain aspects of the protocol, there was no attempt to have a step for step simulation

* of the subject. This goal will be attempted for the later problems in this paper.

* The REACHABLE problem, as it was specified to subjects, is illustrated in Figure 1. The program is

supposed to operate on a directed graph like the one at the top of the figure. According to the

specification of the problem by Barstow (1979), the function is to be given three arguments.- a start

node, a list of nodes in the graph, and a list encoding of the graph structure. The task is to find all

nodes reachable from the start node following directed arrows. Most subjects did not use the second

argument, the list of graph nodes, and some expressed puzzlement that it was included since it

...

·6

St}r~med rl7!dundant with the urapl1 encoding. Tile graph encoding is a li~t of lists where e:.!ch sublist

oivr-:; th·.:: ,:onn::cik:n;; of one of tl;c nod~s. T!H'! nr~t r:- l -:n-.:=-·nt i !1 thnt ~~uUi~ t is the ncdt.' it:E:If ar.cl tl1e - .
second element is the list of nodes connected to that node. The exact example given i11 Figure 1 was

used in explaining REACHABLF. to all subjects.

Insert Figure 1 abc;>ut here

2.1. Simulation of S~bject WC

2.1.1. The Initial Plan. The first subject, we, solved the problem in about two hou.-:. and used a

type of technique particularly frequen~ among novice programmers. That is, he tried to fiist solve the . .

problem by hand, then to identify the structure of his hand solution, and then to map tllat hnnd

solution onto LISP. The basic structure of his hand solution was to start with tile start node; retrieve

connected· nodes from it; add these to the answer; scan the answer for a node he had not tried; if

there wns such a node, add Its connected nodes to the ans'ller; if not, ·ternlinate with the answer. The

following is a particularly relevant portion of his protoc~:

"One thing that occurs to me is to just start wandering through the network and keep
track of where I am. So I start at one, the start node, and say let's go look at the graph
subset of. one".

Our sub;ect tried to map these steps into operations. on list ~ctures. Figure 23 illustrates the

hierarchical plan that we think he developed for performing pperations on list structures. The plan

began by initializing the answer list to the start node. Then he had a chunk of behavior organized by a

control construct that we call reoeaJ·until flibul. This involves performing a set of operations until a

test results in a failure. We believe that this Is a natural pre-programming contr~l construct for most

subjects. It has an obvious relationship to the repeat·until·success construct that was an essential

part of the TOTE hierarchies of Miller, Galant~. & Pribram (1960).

Insert Figure 2 about here

• .. • • .. - ~ • • • • • • . • • • I • - - ... , .

REACHABLE

----~~®

~
~-----® . @

ARGUMENTS

START:

NODES:

GRAPH:

~
@

1

(1 2 3 4 5 6 7 8)
• • 0 • •

((1 (2)) (2 (5 6))

(3 (4)} (4 (3))

(5 (6 8)) (6 (1 5))

(7 (6)))

ANSWER: (1 2 5 6 8)

Fl(iURE 1

..

(a) LIST OPERATIONS

(b)

·./ ~
ANSWER=

(START)

REPEAT UNTIL

TEST FAILS

/ \
TEST: SCAN

.ANSWER FOR

UNTRIED NODE

PERFORM

ADD CONNECTED FLAG NODE

NODES TO ANSWER AS TRIED

(1)

(1)(2))

(1 (2 (56))

(1 (2 ((5 {6 8)) 6))

(1 {2 {{5 (6 8)) {6 (1 5)))

(1 (2 ({5 {6 a]

Fl(iURE 2

7
I

The test in the repeat-until-failure loop involved determining whether there was an untried node on

the answer list. Our subject thought of impamenfing this vaguely in terms of a scan of the answer list.

i'e had two operations to perform if he could find an untried member. One was to add its connected F

nodes to the answer list. The second was to tag the node as tried. As best we can determine, our

subject had no mecharian in mind for the tagging. In his mental simulations he just remembered

which nodes he had tried. A major reorganization of his plan occurred !ater when he tried to

implement the marking of nodes as tried. However, he could have in fact implemented a LISP

function that was basically identical to the control structure in Figure 2a.1F

In part (b) of Figure 2, we have reproduced verbatim WC's sketch of how his plan would change the

structure of the answer list for the example in Figure 1 with each iteration through the repeat-until.

flalure. He thought because of the embedding in the GRAPH formalism his answer would become

more embed ded with each iteration and he would have to finally flatten the structure. The last line

illust~ates his recognition that this procedure would generate repeats in the answer and he would

have to edit these repeats out. *

2.1.2. The Initial Code. Our GRAPES simulation requires that we start the program off with a set of

data structures in working memory representing the subject's initial understanding of the problem. ,I
Then various productions can be matched to the contents of working memory and they will start

generating the LISP code. To simulate WC on this problem we put into working memory a

specification of the input-output relation calculated by the function and the hierarchical plan in Figure -

2a.2 The first production to apply responds to the existence of this hand .solution and sets as a

s ,_voal to map it onto a LISP function. The next rule to apply is the default rule for mapping:

IF the goal is to map a procedure onto LISP
4 THEN map its subprocedures

The two main procedures of the hand solution are the initialization of the answer list and the repeat-

until-failure. Therefore, it sets two subgoals to map these onto LISP. The code it puts out at this point

i is:

*_

8

(def reachable
(lambda (node graph list)

~<?>))

It has printed out the standard template for a LISP definition. This corresponds to the almost

universal practice of our subjects who will whip out the basic definition format before doing anything

else or thinking carefully about how they will write the LISP code. The two <?>'s are GRAPES

place-holders for the code to achieve the two major subgoals of the plan.

GRAPES flow of control proceeds in a depth-first, left-to-right manner. Therefore, the program

*i next focuses on writing the code to initialize the answer list. The next two production rules to apply

are:

, IF the goal is to create a structure
THEN create a variable and use SETO

IF the goal is to make a list
THEN use LIST

And the LISP code they create is:

(def reachable
(lambda (node graph list)

(prog (@List2)
(setq @List2 (list node))
(return .?>))))

The first production results in the creation of a PROG structure to permit a local variable @List2 to

hold the answer. The second production recognizes that a list containing the start node can be

created with the LISP function LIST. In-the context of a PROG a RETURN is also inserted.

Now attention focuses on the goal of mapping the second part of the hand plan - the repeat-until-

failure. The next production to apply is:

IF the goal is to map a repeat-until-failure
THEN create a COND in a loop and give the COND two clauses where

one clause performs the test and the other clause deals with failure of the test.

IIt recognizes that a repeat-until-failure can be achieved by a two-clause COND structure in a loop.-

' I ="= I I~ i iI'I iII I I I III 'II . .. i

.0
The first clause will perform the test and apply if the test is successful. The second clause will deal

with the case when the tct fails. The code at this point is:

(def reachable
(lambda (node graph list)

(prog (@List2)
(setq @List2 (list node))

loop (cond (<?> <?>) (t (return/?>)))
(go loop))))

2.1.3. Reorganization of the COND Clause. GRAPES now focuses on coding the condition for

the first COND clause.' This is where the program brings itself to face the issue of how it k, going to

implement the tagging of the node as tried. The subject hit this same issue at this point. At this point

in time the following rule applies

IF the goal is to find an item on a list with a property
THEN code a test for that property

and then search the list linearly for an item with that property

This sets the plan of a linear search of a test and makes the immediate goal deciding how to code the

test used in that search. Because a test for not tried is negative, the following rule applies:

IF the goal is to test if something does not have a property
THEN use NOT and set as a subgoal to test whether the item has the pi'cperty

Then the following rule applies

IF the goal is to test if an item has a property
THEN create a list which will be updated with all items that have that property

and test whether the item in question is a member of that list.

The program at this point has planned the code (NOT (MEMBER <?> @iist4)1where <?> will be

expanded to code the item and @list4 is the answer test. It now turns to its gcal of applying this code

in a scan through the list:

IF the goal is to search a list linearly for an item that satisfies a test
and a set of operations are to be performed on the item

THEN create a two-clause COND structure in a LOOP
where the first COND clause tests for an empty list and returns the answer
and the second COND clause tests for the property and performs the operations
and the list is reset to its CDR after the COND

The code at this point is illustrated below:

.. " n n L ,,m i O i ~ ma i ,,,i i -.. .

10

(def reachable
(lambda (node graph list)

(pro, (@1.ist2 0 List !)
(setq @List2 (list node))

loop (cond((not @List2)(return @List4))
((not (member <?> @List4)) <?>))

(setq@list2 (cdr @list2))
(go loop))))

li
The original COND structure is replaced by this new COND structure.

2.1.4. Finishing the COND Clause. The next thing GRAPES focuses on is how it will code the

element m= the unfinished condition for the second COND clause. It recognizes that the element is the

first member of @list2 and the following basic rule applies:

IF the goal is to code the first element of a list
TtiEN use CAR •S

Attention now focuses on coding the action for the second COND clause. This action corresponds to

the aperations in Figure 2a to be performed on untried items. Therefore, the following rule applies:

IF the goal is to map a hand plan
and the hand-plan performed a set of operations

THEN set as subgoals to map these hand operations

This creates the goals of mapping the operations of adding the connected nodes to the possibility list

and tagging the element as tried, The following four productions3 apply in sequence to code the

operations of adding connected nodes to the possibility list:

IF the goal is to reset the value of a variable
THEN use SETO

IF the goal is to add two lists together ib
THEN use APPEND

IF the goal is to get the second member ofa list
THEN use CADR

IF the goal is to retrieve a sublist that begins with a key
THEN use ASSOC

The program then focuses on the subgoal of coding the tagging of the item as tried. The following

two rules apply in order:
I

IF the goal is to give an item a property,

I(11

and there is a list to be updated with all items with that have that property
THEN add the item to the list with the property

IF one wants to add an item to a list
THEN use CONS

The final code is:

(def reachable
(lambda (node graph list)

(prog (@List2 @List4)
(setq @List2 (list node))

loop (cond ((not @List2) (return @list4))
((not (member (car @,List2) @List4))
(setq @List2

(append @List2 (cadr (assoc (car @List2) graph))))
(setq @List4 (cons(car @List2) @List4))))

(setq @List2 (cdr @List 2))
(go loop))))

One thing that this example obviously illustrates is that a lot of specific rules underlies the generation

of code in LISP. One of the basic claims we wi!l be making about learning in LISP is that it consists in

a major part of the acquisition of many iuch special purpose rules.

Below is the LISP code produced by WC for this problem:

(def reachable
(lambda (list graph node) 10,

(prog (@List4 @List2)
(setq @List4 (list node))
(setq @List2 (cadr (assoc node graph)))

loop (cond ((not @List2)(return @List4))
((member (car @List2) @List4)

(setq @List2 (cdr @List2)))
(t (setq @List2 (append @List2(cadr

(assoc (car @ List2)graph))))
(setq @List4 (cons (car @List2) @List4))
(setq @List2 (cdr @List2))))

(go loop))))

I have renamed the variables in the subject's program to correspond to those used by GRAPES. Also

the subject wrote a helping function rather than the CADR-ASSOC composition. There are three

significant differences in the final code. First, the subject initializes @List2 and @List4 with the

results of the first iteration through the loop in the GRAPES program. Second, he has encoded the

*l p'ld ll liI

L .12

NOT-MEMBER predicate by making it the default T clause after a MEMBER test. Third. the resetting

of @list2 Occurs within each clauise. Each of these diffcrences could have hoen eliminated by

introducing specific production rules or variants in existing rules. However, such tuning seemed

pointless and we wanted to use the same GRAPES rules for a variety of problems by a variety of

subjects. In any case, the degree of correspondence is quite good given the widle range of solutions

that we have seen for REACHABLE. The reason the solutions are similar is that GRAPES and the

subject begin with the same working memory state.

2.2. Simulation of Subject 2

In contrast to subject WC, subject 2 did not use a hand simulation but rather worked from a

definition of the REACHABLE relationship. He worked from the following definition which he

articulated

Node Y is reachable from node X if
(a) There is a direct path from X to Y

or (b) There is a node Z such that
(i) There is a direct path from X to Z

(ii) Node Y is reachable from Z.

The subject attributed his ability to formulate this definition to prior exposure to graph theory. In

simulating this subject, we loaded a representation of this definition in working memory together with

the same specification of the problem as we gave to WC. We ran this simulation with the same rule

set that we used on the first simulation. This will provide a test of whether the rules were especially

tuned to reproduce WC's solution. In what follows we will star the rules that were also used in the

prior simulation,.

2.2. 1. The Initial Coding The first three rules to apply are given below in order:

Ri: IF the goal is to code the answer
and the answer is defined as all members 0

with property A or property B
THEN set as subgoals to

1. code all the members with property A
2. code all the members with property B

and UNION these together

R2: IF the goal is to get the second member of a list

13

THEN use CADR

R3: IF the goal is to retrieve a sublist that b-gins with a key

THEN use ASSOC w

The code at this point in time is given below:

(def reachable
(lambda (node graph list)

(union (cadr (assoc node graph)) ?>)))

The first rule translates the OR in the definition of REACHABLE into a UNION. The next two rules

we saw apply in the previous simulation and in this context they encode the directly connected part of

the REACHABLE definition.

The program now turns to coding the distantly reachable nodes (part b of the definition). Then the

followin.1 rules apply: S

R4: 'F the goal is to obtain all the elements which have a relation
to any member of a list

THEN use MAPCONC on that list with a function that will return all the
elements that have a relation to an argument

R5: IF the goal is to code a relation
and that relation has been coded earlier

THEN create a variable
and set it to the value of the earlier coding
and use it in the current coding

R6: IF the goal is to code a function to achieve a relation
and the function is to be called by a function that is trying to achieve the same relation
but their arguments are different

THEN create a recursive call to the function
and set as a subgoal to check that the recursion will terminate *.

The code that results at this point in time is given below:

(def reachable
(lambda (node graph list)
(@functionl node)))

(def @functionl
(lambda (node)

(prog (@LVarl)
(return

(union (setq @LVarl (cadr (assoc node graph)))
(mapconc'@ function 1 @LVarl))))))

-- . . .'I N • N l I I -

14 3

Production R4 responded to the definition of distantly reachable nodes by planning to map a.

function that obtained the reachable nodes througjh a list of the immediately reachable. Production

R5 recognized that the immediately reachable had already been calculated and set a local variable

LVarl to these. Production R6 recognized that the function to be mapped was identical to the current

one and created a recursive call. It is at this point that the simulation splits the calling function,

reachable, from the recursive function, @function.1, which will just take one argument. This is done

to enable the simple recursive call in the MAP context.

2.2.2. Terminating the Recursion The subgoal that is set by this last function is to guarantee that

the recursion will terminate. At this point the fcllowing two rules apply to refine this goal into

something that can be achieved.

R7: IF the goal is to check that a recursive call to a function will terminate
and the recursve call is in the context of a MAP function

THEN set as a subgoal to establish that the list provided to the
MAP function will always become NIt.

R8: IF the goal is to establish that a list will always become NIL
and it contains part of the answer to a problem
and the full answer is finite

THEN set a subgoal to avoid repeating elements that
are already part of the answer

Thus, the program reasons to the conclusion that it does not want to repeat answers in the @LVarl

structures that it calculates. The following rule recognizes a technique for achieving this

R9: IF the goal is to avoid repeating elements on a list of answers
THEN create a global list to hold the answers so far S

and set as subgoals
1. to edit the list each time it is created so that it does not contain

elements in the global list
2. to update the global list each time new answers are obtained

A variable @GVarl is created to serve this function of a global variable. Since it only has to be

global to the recursive function @functionl, it is made a PROG variable in the calling function

REACHABLE. The following rule applies to edit out repeats when the variable @LVarl is calculated

RIO: IF the goal is to find all the members in one list that are not in another

THEN use LDIFFERENCE

The function at this point in time is:

(def @functionl
(lambda (node)

(prog (@LVarl)
(setq @GVarl <?>)
(return
(union (s tq @ILVarl (Idifference (cadr (assoc node graph))

@GVarl)).
(mapconc '@function1 @LVarl))))))

The remaining goal is to code the updating of the global variable so that it includes the new nodes

calculated as the value of @LVarl. However, @LVarl is calculated after the intended updating of the

global variable. Therefore, the following rule applies

R11: IF the argument needed is embedded inside some later LISP code
THEN extract the code and bring it to where it is needed r

Then the following rule applies to encode the updating of @GVarl.

R12:* IF the goal is to add two lists together
THEN use APPEND

The final LISP code for @function1 is:

(def @functionl
(lambda (node)

(prog (@LVarl)
(setq @LVarl (Idifference (cadr (assoc node graph)) @ GVarl))
(setq @GVarl (append @LVarl @GVarl))
(return (union @LVarl (mapconc '@function1 @LVarl))))))

- In contrast to the previous GRAPES simulation where the correlation between subject code and 0

program code was partial, this GRAPES simulation precisely reproduced the code of the subject

(after renaming of variables). The solution to this problem is quite different from the first, but was

produced by the same GRAPES program with just a different initial working memory. Thus, the

REACHABLE problem can evoke a wide range of behavior from GRAPES and from subjects.

Despite these considerable differences, the two protocols produced by GRAPES have an important

feature in common with each other and with the protocols of all the subjects we have observed on the

-- I- , . ,.

zz
o 0D

i

zn LL)w S

0 ~ < ~ ~ o

z CUdO

I1-i

LuJ

(n)

0 0

w 9

FTI(HJRE 3

GOALI

I REACHABLE

NEWGOALI
CODE

@ FUNCTION1

NEWGOAL2 NEWGOALS

RELATION (@ GVcir

*r

NEW GOAL 3 GOAL3

SET7 CODE
@ LVar I DISTANTLY /

REACHABLE

USE- MAPCONC

GOAL2 NEWGOAL4 GOAL5 GOAL6

CODE EDIT CODE CODE

IMMEDIATELY IMMEDIATELY @ LVjrl I FUNCTIONJ

REACHABLE v/ REACHABLE v

USE-CADR

GOAL4

CODE SUBLIST
4 OF GRAPH

U USE-ASSOC

* FIGURE 4

16 p

problems. This is that they involve a reorganization of the LISP function. For sulject 1, this occurred

when he revised the COND structure. For subj.ct 2, it cccurrnd when he intrcdciced qflobal variables
II

to keep track of tried nodes. The reorganizations for all subjects are concerned with the poblem of

avoiding looping when searching the graph. Many of the subjects, including these two, were aware of

the danger of looping from the outset, but simply could not anticipate how it would impact on the I-
problem solution until they had gotten some distance into their coding.

2.3. The Goal Structure

The previous examples illustrated how performance is controlled through tha interaction-of a large

number of rules. These rules are organized according to a hierarchical goal structure. The various

rules respond to goals and can create subgoals. So in subject 2's protocol after rule R4 the goal

structure in Migure 3 had been created. The program generates this goal structure in a left-to-right

depih.first manner. The code is written in this same order. In fact the hierarchical structure of the

goals often is linked into the hierarchical structure of the code.

Insert Figures 3 and 4 about here

A[this point there are two open goals indicated by question-marks at the terminal nodes in Figure

3. These are the goals of coding the list which the function is supposed to be mapped through and of

coding the function itself. Rules R5-R9, which respond to these goals, do not just unpack these into

further subgoals. Rather they transform the original goal structure. The goal structure after their

application is illustrated in Figure 4. The recursive function @functionl for use in MAPCONC has

been created and inserted between the REACHABLE function and the use of UNION. The code of

SETO has been inserted before the coding of the immediately reachable. Open goals are the editing 1

of the @LVarl (the newly connected nodes) and the updating of @GVarl (the list of already

connected nodes). GRAPES selects the left-most open goal to work on, which in this case involves

editing the local variable. In achieving the remaining open goals, one further transformation of the

goal structure is produced. This involves taking the structure under the SETQ for @LVarl and

';mmd "4'ilammil: l i l ~ l~lli ~i i
i n

I -" - - : 10

0O M

0

aa

F w

17

moving it up in the goal tree to before where @GVar 1 is set. Note that order in the goal tree does not .

nccc~•sarily al•.vays correspond to order in the code. There is an example of non-correspond~ncc in

Figure 4. The function UNION was coded before the updating of the global variable. This is quite

typical in programming behavior where· subjects will code later lines first and then insert the earlier

lines. Another e:<ample of this occurred in the simulation of subject 1 where the code (not (member
W/~Ji 6f!c..uleJ

<?> @List4)) before the COND structure was created into which it was inserted.
A . .

The hierarchical generation of goal structure and subsequent transformation of these structures is

similar in character to the conception of planning in Sacerdoti (1977). Anderson (1983) has argued

that this kind of control structure is quite ubiquitous in cognitive skill. For instance, it is found in

naturallan~uage where phrase structure is the sign of the hierarchical structure and transformational

structure of language is the sign of goal transformations.

As these examples make clear, a program develops out of a series of succeco..sive reworkings of an

Initial p!an. This Is very much like the succes.~:vP. refinement model of algorithm design advocated by

Kant and Newell (1982) .. although their formatism for representing plans differs considerably from

ours.

3. POWERSET

The POWERSET example occurs towards the end of our 30 hour learn!ng sessions and is the most

demanding of the problems that we present to our subjects during the 30 hour learning. It differs from

REACHABLE in that it tends to evoke the same solution from all subjects. Thus, the coding behavior
•

of GRAPES corresponds quite closely to all subjects at the level of lines written. However, "typical

subject behavior contains numerous errors, recoveries, and false starts not seen in our simulation.

After discussing the program's behavior on POWERSET, we will discuss some of the errors made by

one typical subject on this problem.

Insert Figure 5 about here

18

The POWERSET problem as it is presented to subjects is illustrated in Figure 5. Tile subject is told

that a list of atoms encodes a set of elements and he is to calculate the powerset of that et -- that is.

the list of all sublists of the original list, including the original list and NIL. Each subject was given an

example of what the POWERSET was for a three element list. The three subjects we observed spent

from under two hours to over four hours solving this problem. In each case, they spent about

one-third of their time uncovering a key insight and the other two-thirds of their time working out the

LISP code that would capitalize on this insight.

We have also assigned this problem to a number of programming classes and cahered irtformal

problem solution reports. There are ,wo types of solutions which subjects are prone to attempt and

which tend to distract them from the correct insight:

1. There is a strong tendency to try to implement the way they would solve the oroblem by

hand. For most subjects this hand solution is one in which they calculate the null list,

then all the singleton lists, then all the doubleton lists, etc.

2. Some subjects are distracted by the fact that certain sublists can be achieved quite easily

by taking CDR's. So, given the example (A B C), (B C), (C), and () can be gotten by

taking successive CDR's. This leaves the difficult task of calculating the non-COR's.

The essential insight is illustrated in Figure 6. This involves noticing the relationship between the

4 POWERSET on the full list and POWERSET on the tail (CDR) of the list. In Figure 6 we denote by X

the result of POWERSET on the full list and we denote by Y the result of POWERSET on the tail of the

list. Subjects noted that Y provided half of the members they would need for X. Second, they noted

* that the other half could be gotten from Y by adding A, the first member of the list L, to each number

of Y. Thus, X is formed from the lists Y and Z, where Z is formed from Y by adding the first member of

L to each member of Y.

.... o.o..

Insert Figure 6 about here

. 6..........

L= (A B C)

X= (POWERSET L) Y = (POWERSET (CDR L))
((A B C) =((B C)

(A B) (B)

(A C) (C)
(A) 0)

(B C)

(B)
(C)
())

X- Y+Z WHERE Z= ((A B C)
(AB)

(A C)
(A))

Z IS FORMED FROM Y BY ADDING A TO EACH

MEMBER OF Y.

FICG1IRE 6

10

The decision to consider tile relationship between (POWERSET L) and (POWERSET (CDR L)) is

not just a stab in the dark. It is dictated by a recur.siVe prncqramming technique tht the students were

taught called tail-recursion or CDR-recursion. This technique involves assuming that the function will

return the correct result for the CDR of the list and trying to use this result to calculate the correct

answer for the whole list.

3.1. GRAPES Problem Solution

Figure 7 illustrates GRAPES' goal structure for this problem. GRAPES keys off the fact that the

argument is a list to attempt the CDR-recursion technique. This technique involves two'subgoals.

*One is to write the code for the recursive step and the other is to write the code for the terminating

step whicli is when the argument to POWERSET is the empty list, NIL. Under the recursive step, there

a-e two subgoals. One is to characterize the relationship between POWERSET of the !ull list and

POWERSET oi the tail of the list. The other is to convert that characterization into LISP code.

Insert Figure 7 about here

As it is not our concern to model the pattern-matching abilities and. set-theoretic knowledge that

permit this insight into the recursive relationship, we basically provided GRAPES with a I
representation of this relationship. With the relationship id6ntified, GRAPES then turns to the goal of

converting that into LISP code. The answer, X, is the sum of two lists, Y and Z. GRAPES recognizes

that this can be achieved by using the LISP function APPEND with the two arguments, Y and Z. It

therefore sets as subgoals to calculate Y and Z. It recognizes that under the assumption of CDR-

recursion, it can use the recursive call (POWERSET (CDR L)) to calculate the value for Y.

Then GRAPES turns to coding the second argument, Z. Z is formed from Y by adding A 1Q each

member of _Z. GRAPES sets out to write a new function ADDTO that will form this second argument.

The goal structure for the working of ADDTO is illustrated in Figure 8. The function is written with to

the same cdr-recursion technique as is POWERSET. More advanced students might recognize this

*

wp

z w

z ~
LU 4

o w00 -w -j

a: z ii

wow U) = D0
H0 wH H- a

au HO Cf Iw 0
W 0

r) 00 ZD

0 W C) LA.

w crr

W 0o z z
- U/ u

w 0
0 W

w UiLw . HL.

0L 0-LA 0wz

wz>~ LI 0 0 z (

6LLJ 0 rw Li
Cr L - 3

(n U w

0 FIGURE 7

20

as basically a simple iterativ3 structure and solve it according to a PROG or MAP structure, but we are

simulating LISP studonts at the point where they have nct been taught '!)out PROG's or MAP's and

only know about recursion within LISP and not iteration. The final code written by GRAPES for

ADDTO is given below:

(def addto
(lambda (a y)

(cond ((not y) nil)
(t (cons (cons a (car y))

(addto a (cdr y)))))))

Insert Figure 8 about here

The program returns from writing ADDTO and its further behavior is illustrated in Figure 7. It next

.4 decides how to calculate the arguments to ADDTO. After this it turns to coding the terminating

condition for POWERSET. Here it calls upon its set theory knowledge to determine that the powerset

of the empty set is a set containing the empty set. Given the coding principles of this problem, it

translates this into '(()). Its final code is:

(def powerset
(lambda (I)

(cond ((not I) '(0))
(t (append (powerset (':dr 1))
(addto (car I) (powerset (cdr I))))

3.2. Comparison to WC

4 As illustrated above, given the insight, the coding of POWERSET provides very little difficulty for

GRAPES. It can be coded directly from recursive relationship in a straightforward hierarchical

manner. It does not involve the complex transformation that we saw with REACHABLE. However,

individual subjects spent from 1 to 3 hours converting this insight into code. While the overall

structure of their protocols is like that of the simulation and their final functions certainly are similar,

these subjects spend their time making errors of coding and recovering from these errors.

The subject WC's protocol is easiest to discuss because it involves the fewest errors. Like the

.. Illmm ,muua ulm~annn illmlIolu~ ii~iilll ~la mnn i~nma

z

-w

1-0 0A

00

Wa 0
1Z-i

0 CR
2 a

00 w cnlL w

0 Cc) (_wY wn z
0 0 (w 0

< a: _ .g OLL. 1
0 z w)

0 00V) 0-Y0
D, W/

c r = D 0 0oa

w ~ w cca 1
w Z W z
0 qmW

_

0 _j

w1 On O >-uJ
a: z~a:

0 0

1co
6- 0 -c'n

_ijZ WEZ

F IGURE 8

21

program, he consciously applied CDR-recursion as a strategy, dincovered the relationship between

(POWERSET L) arid (POWERSET (CDR Q)), and clv. rly :rticu!ated to himself the rel:;ticmn'frp that we

denote X = Y + Z -- specifically, that the answer was the sum of two lists. He then turned to coding

the relationship. Despite the fact that he had seen the relationship as the sum of two lists, he first

turned to trying to encode just Z. Thus, he misremembered the relationship. After a minute thinking

about it, he spontaneously corrected himself and recognized That he would have to APPEND two lists

together. Like GRAPES, he realized that one argument to APPEND, Y, could be coded as

(POWERSET (CDR L)).

He then turned to writing the code for Z and his first code was (UNION (CAR L) (P(WERSET (CD

L))). UNION is a function which combines two lists and avoids repeats. This clearly vwill not give Z. It

seems he has a vague specification in working memory of combining A with Y and UNION matches

this specification on the basis of it being a combining function. WC knows quite w-l what UNION

does. As evidence of this, he corrects his code a couple of minutes iater. and a.ticuiates what is

wrong without intervention of the experimenter.

Like the GRAPES simulation, WC does not have the concept of an iterative operation as distinct

from tail recursion and so analyzes ADDTO as another case of tail recursion. When he firs' turned to

coding the iteration or recursion step and he wrote (CONS (LIST A (CAR L))(ADDTO A CDR L))). This

differs from the correct code in that the function LIST is used rather than a CONS. Rather than

combining A and (B C) to get (A B C), this will combine them to get (A (B C)). Once again we see on

our subject's par, the confusion of two similar functions--in this case LIST, which makes its

arguments elements of a list, is confused with CONS, which adds its first argument to the list which is

4 its second argument. This is all the more interesting because this line of code also contains a correct

use of CONS. It needs to be stressed that upon reflection, WC knows quite well the distinction

between CONS and LIST. Again it is the matter of sloppy retrieval in the course of problem solving.

4
Then WC turned to writing the appropriate code for the terminating condition- -i.e., when ADDTO is

.

22

called with arguments A and NIL. His first thought is that he should add A to this empty list and return

(A). That is, he has lost sight of the fa'.ct that the second argument to ADDTO is a list of Iits and he

should add A to each sublist. This is another example of the subject losing track of what it is that he

had intended to do. The subject discovered the problem with this code by mental simulation and put

in the ccrrect terminating value, namely, NIL.

At this point, we typed the function definition into the terminal and tried it out on some'sample

problems. By tracing the function, he spotted and diagnosed the problem caused by his use of LIST

rather than CONS. Fie changed this and the function ran correctly. It should be noted that WC 5

corrected this problem without help from the experimenter and without looking up CONS or LIST in

his text.

Having completed ADDTO, he then returned to writing POWERSET. His first remark was "Now,

why aid ! write ADDTO?" He had completely forgotten the series of goals that led to this. He had to

re-read the code he had written to reconstruct his goals. Thus, GRAPES clearly differs from WC in

that it has perfect memory ;or the goal structure in Figure 7.

After he reconstructed his plan for POWERSET, WC turned to planning the terminating condition.

Hi first inclination was to return NIL as the value when POWERSET was called with the argument

N!L. This was the only place that we intervened with some suggestions. We pointed out that the

powerset is defined as the set of all subsets of a set. A set itself is considered a subset of itself.

Therefore, the set itself was among the sets in the powerset of a set. Therefore, among the elements

of the powerset of the empty set should be the empty set itself. Thus, the result for POWERSET of NIL

should be (NIL) or (0). WC was completely unconvinced by this argument but obediently returned

(NIL) as the result in the terminating condition.

Then we typed the function into the terminal and watched it run with a TRACE on POWERSET.

When he saw POWERSET return (NIL) for the value of NIL and when he was how this result was used 6

by higher levels of POWERSET, he remarked that he now understood why (NIL) was the right value

I

6 23

for the terminating condition. He still did not understand our logical argument but hie had a

procedural understanding of why the result was essentilt h orc okigo h ucin

There is a close correspondence between WC and GRAPES in the overall flow of control among

goals created by the decomposition strategy. However, there are frequent failures of memory on

WC's part which are not part of the simulation. He both loses track of partial products calculated in

* the course of planning a function and incorrectly retrieves functions from memory. It needs to be

emphasized here that WC is a very intelligent and capable person. So these errors are information

about the nature of being a novice in LISP programming and not about WC. We have observed a

similar high frequency of errors in all our novice subjects. Such errors are less frequent with

advanced LISP programmers. It is also noteworthy that errors like the LIST-CONS confusion are

4almort non-existent when subjects are ask1ed to execute a command at thle top-level of LISP. They

only come out embedded in Ithe context uf a problem with considerable working memory load. (A

recnt xpeimet cndcte ona cassoi60 novice programmers has confirmed that LIST-CONS

* confusions are more common when the Function use is embedded within the other functions). A clear

implication of this is that a major difference between the current implementation of GRAPES and our

subjects is working memory capacity.

3.3. Analysis of Retrieval Failures

Working memory failures are clearly the cause of certain problems in the protocol like (1) forgetting

is that the answer to REACHABLE was a sum (Y +- Z) of lists; (2) forgetting that the argument to ADOTO

was a list of lists; (3) forgetting why ADDTO was written. We think working memory failures are also

* responsible for the incorrect retrievals of functions like UNION and LIST.

The following is our analysis of the LIST -CONS confusion. It is similar to what Norman (1981)

called a description error. We assume that the subject represents as his goal

1. To create a LIST L
6

2. where the first element of L is A

24 p

3. and where the rest of the list consists of B

This matches the specification of CONS. On the other hand, if the third clause above had conoicts,

replaced by contains, then it would match the specifications of LIST. If we assume that the relation

contains is simpler than consists and involves a subset of its semantic features, we would predict that

subjects would tend to lose the distinguishing features under heavy memory load and retrieve LIST S
instead of CONS. Also, this analysis would predict that CONS should not be intruded instead of LIST.

This asymmetry is clearly the case in our protocols. The asymmetry has been shown to be statistically

reliable in large-scale *class experiments as well.4 This analysis is also consistent with a different
CONS

6error that we will see in the next protocol.

It is interesting to speculate why there should be this contains-consists confusion and w,'hy contains

should be more primitive. In standard LISP conventions consists would be mapped directly into .tai

and contains would be defined indirectly in terms of tail. However, this is apparently not the way the

novice programmer thinks of it. Perhaps, the novice's thinking is dominated by the marks that denote

list structure, particularly the parentheses. The representation of "the rest of X contains Y" might be

represented as "X ... Y") or "Y occurs just before the right parentheses of X". The representation

of "the rest of X consists of Y" might be represented as "X = Z) where Y = (Z)" or "Z is _w~hal occ

between the left and rigiht oarentheses of Y and Z occurs just before the right parentheses of X". The S

underlined part in the above representation is the extra information which distinguishes consi.., from

containa. If this information were lost or misrepresented in working memory then LIST would provide

the best matching pattern to the goal specification.5 A somewhat different way of putting the point is 0

as follows: In the definition of LIST the argument Y is a proper subpart on the answer X. In contrast,

the argument is not a proper subset of the answer in the definition of CONS. It is cognitively simpler

when the answer preserves the structure of the argument.

4. ONETWO
I

In the previous protocols, we contented ourselves with having GRAPES model the overall flow of

25

Control and the correct codings of the subject. In part this was because the complexity of the

protocols makes a detailed simutlation extremely burdensome and .erhaps imposcible. In the

simulation of the ONETWO protocol by subject SS we aspired for a much more detailed level of

correspondence. This protocol is just over an hour in length. It occurred at the sixth hour of the

learning protocol. It is also interesting because it contains within it an example of a significant act of

learning. This involves the acquisition of new problem-solving operator.

The ONErWO problem required the subject to write a function which would take a list as an

argument and return a new list consisting of the first two elements of the argument list. The LISP

functions that the subject knew at this time included CONS but the subject had not yet learned about

LIST. She knew about CAR and CDR and with these she had defined functions that would return the

first, second, and third arguments of a list. These were the only functions that she had written up to

this point in time.

4.1. Initial Attempt at ONETWO

She flailed at writing the function ONETWO and the experimenter suggested writing a simpler

'unct-o;,, ADDTWO, which would take two arguments and make a list out of them. This problem she

was able to make some headway on. It is interesting to speculate why ADDTWO was more tractable

than ONETWO. As we will see, the basic problem and its solution did not change in going from

ONETWO to ADDTWO. However, by reducing the complexity of the task by one level, the burden on

working memory was reduced so that the subject was better able to match operators.

Figures 9-14 illustrate the simulation's attempts to solve ONETWO. Given the perfect

correspondence between the simulation and SS's protocols, we irfer that these figures also describe

the goal structures that were guiding her problem solutions.

.................. ooo.o.o

Insert Figure 9 about here
o. oo

Figure 9 illustrates the first work that was done on the ADDTWO subproblem. The first operator

.0n n m i i I -| ..

WRITE
ADD TWO

CODE a&CHECK

CODECHK
ADD TWO CODE

MAKEUP CODE CHECK MAP TO
EXAMPLE1 [EXAMPLE CODE ABSTRACT

EOEEXAM

EXAMINE ~ EXAMINE
E A I EARGI ARG2 RSL

(AB8) (C D) ((A B) (CD))
V 'I V

F 16 U R

26

decomposes this into the subgoals of coding the function and checking the code. The first operator

set subgoals to come up with concrete examples of the input to ADDTWO and vhat its cLtput chould

be, to find some code that could be typed at the top level that would convert the concrete input into

the concrete output, to check this code, and then to map ihis code into an abstract function. The

inputs she chose to pass to ADDTWO were (A 8) and (C D). Why she chose list arguments we are

unsure. The result she wanted for these inputs was ((A B) (C D)).

Figure 10 illustrates the process by which she decided how to create this example at the top level.

After deciding on the example, she went th-rough an episode where she explicitly reviewed the

definition of all the functions she knew searc.hing for an appropriate one. She selected CONS. We

represented the definition of CONS to GRAPES as

The first argument of CONS is any S.expression and the second argument is a list. Its
result is a list. The first element of "he result is the first argument. The rest of the result
consists of the second argument.

She and GRAPES choose CONS on the basis of the fact that a list was wanted and CONS makes lists.

Having selected CONS the subgoals weFe now to determine what arguments to pass to CONS in order

to get the intended result. Note that this is a different use of CONS than in the previous simulations.

Previously, GRAPES knew both what the inputs and the result were and selected CONS because it

would map one onto the other. Here CONS is chosen solely on the basis of its result and it is

necessary to decide what arguments to pass to it.

....... °............

Insert Figure 10 about here
........................

The critical piece of information in selecting the first argument is the definition statement The first

elemen of the reu ai the first argument. GRAPES interfaces this with the desired result, ((A B) (C*1
D)), to determine that the correct argument should be (A B).

Next, SS and GRAPES turn to the second argument. The appropriate part of this definition is The

rtf the rsut conists f the second argument. Matching this would retrieve ((C D)) as the second

argument. However, our subject retrieved (C D). We assume, in line with our discussion of the

wS

w0 C0 zI. no
<J 4LL w~

a. Hcn 'o

x 0<U)

w
I 4L <,

0 I- wL 0 x

w a.

oL -

L)O 00 E)

Wo Clj)
_j~~ UZ 0LW

0<(.1 .C) 0

0- W S-w

OCICW

0 ZQ
LLJ ~ w z

2 ou)
M zxm

FIG UR E 10

27

LIST-CONS confusion, that the semantic features of consists were partially lost and this statement

becaine The r".t of the r rilt contains the .cond arrm iumnt. Thus, the same error that caues LIST

to be retrieved rather than CONS will produce this error. We manipulated GRAPES' working memory

so that it would produce this error.

The subject and GRAPES mentally simulated what the outcome would be of the code (CONS '(A B)

'(C D)). This involved retrieving the definition of CONS again. As evidence that her definition of

CONS was not in error, she correctly determined that ((A B) C D) would result as an answer. This

corresponded to an error she had encountered frequently and we assume she had compiled an

operator to repair this which embedded the second argument to CONS in an extra 5 s,. in this way,

she and GRAPES recover from their error and make up the concrete example (CONS '(A B) '((C D))).

This concrete example is different than the concrete example in the tirst REACHABLE simulation,

but it is serving a similar function. In REACHABLE the subject had solved a problem by hand and

used the structure of the hand solution to guide the LISP code. Here the subject has actually created

some LISP code that can be typed into the top level of LISP and is going to use the structure of this

code to guide the creation of an abstract LISP function. In neither case is the mapping from concrete

to abstract trivial.
I

4.2. The Mapping

...............

Insert Figure 11 about here

Figure 11 illustrates the simulation of SS's initial attempt to map from the concrete code to an

abstract LISP function. First she maps CONS in the concrete code into CONS in the LISP function.

At this point the structure of the function is .

(def addtwo (lambda (one two)
(cons <?> (7)))

The remaining task is to map the two concrete arguments into abstract arguments. She first focuses

on mapping (A B). The following rule applies:

....m Ito N Ill '° -

r

w o J

-j z

W 0 LI3
w 0J Li
w

z LL

0. 0L (oL~ i
LLaj wz%>

z z) LI
W0 0

W 0 0 %>

1 0
0< C/ U-w

C,) <_)0 dL
w

t I

CL a V do %

FIGUR 11 m**

28

IF the goal is to map a concrete expression to LISP
and the expression is a data structure involving a term
and thte tarm correcsponds to n arqi ot,-.nt .o fhe function

THEN the abstract expression can be obtained from the data structure
by replacing the term with the argument

So, in this case she is trying to map the concrete expression (A B) where the argiumint ONE

corresponds to the term (A B). Therefore, after substituting the argument for the term, the abstract

expression becomes ONE. This same rule applies to map the second concrete expressio. ((C D)). InA
this case the agrarument TWO corresponds to the term (C D) and the abstract expression after

substitution is (TWO). Note this rule has correctly mapped the first expression but incorrectly mapped

the second expression. The function definition at this point is

(def addtwo
(lambda (one two)

(cons one (two))))

Insert Figure 12 about here

Figure 12 iilustrates some of the subsequent evolution of this definition. The coding of ADDTWO

had the brother goal of checking that code. Both SS and GRAPES called the LISP interpreter to try

the code with the arguments (A B) and (C D). Both received the same error message "TWO

undefined function object." This corresponds to an error that SS had encountered a few times

previous;y in her problem solving. In previous occasions, the cause had been failure to quote an

argument. Therefore, we assumed that she had compiled an operator that used quote to stop

evaluation. When this operator applied her LISP code became

(def addtwo
(lambda (one two)

(cons one '(two))))

Again, the code was tried. This time it returned the result ((A B) TWO). Comparing this with her

desired result the problem was localized to the second argument given to CONS and GRAPES went

back to retrying the goal of mapping ((C 0)).

.... o

Insert Figure 13 about here S
.... . o.

i I "

COE / CHECK
ADDTWO CODE

CODE- CONCRETE EXAMPLE TRY WRITTEN FUNCTION

V "TWO
MAP TO 1 COMPARE I UNDEFINED

ABSTRACT I RESULTS FUNCTIONDEFAUL OBJECTu
DEFAULT FUNCTION GIVES ERROR

DEFAULT QUOTE STOPS TRY WRITTEN FUNCTION
EVALUATION

MAP MAP (TWO) COMPARE
(A B))((C D)) T (A B)(CD))

MAP FIND MAP FIND ((A B)TWO)
FUNCTION GIVES
WRONG RESULT

ICHECKI CHECKI FIXI CHECK ~
ONE TWO BUG CODE V
v g LOCALIZE TRY WRITTEN

PROBLEM FUNCTION

REDO COMPARE
4V ((A B)(C D)) I

((A B)(C D))

FIGURE 12

.., - .:n

t:
=

::

:0

rT
'1 .,_.

V
o

l

~
M

A
P

{(
C

D

))

"
C

O
D

E
-C

O
N

C
R

E
T

E
-E

X
A

M
P

L
E

M
A

K
EU

P
EX

A
M

PL
E

..
j

C
H

O
O

S
E

C
O

D
E

I C
~E
CK

EX
A

M
PL

E
"

CO
DE

V

M

E
N

T
A

L
L

Y

F
U

N
C

T
IO

N

S
IM

U
L

A
T

E

F
IN

D

A
R

G
U

M
E

N
T

S

FI
N

D

FI
R

ST

A
RG

U
M

EN
T

(C
 D

) "

U
SE

I

CO
N

S
j

CO
M

PA
RE

((

C

D
))

((

C

D
))

I

F
IN

D

I M~
P

I
SE

CO
N

D

(C

0)

v
A

RG
U

M
EN

T
v

M
A

P

F
IN

D

'
NI

L
~

../

0 "

M
A

P
TO

1

A
BS

TR
A

CT
 .

./
D

E
F

A
U

LT

M
A

P
CO

NS

1.
./

D
E

F
A

U
LT

I M
AP

I/

NI

L ~ Nl
 L

"

29

Figure 13 illustrates he simulation of this mapping. Having returned to this goal, the previous

MAP-FIND operator will not apply again. Therefore, a dafault rule oppli , which cre ates a new
I!

subgoal of coding a list consisting of a single argument. As in the case of coding the full ADDTWO

problem, GRAPES falls back on the plan of making up a concrete example, coding it, checking the

code, and then mapping the code into an abstract code for the function. The previous concrete

example of ((C D)) is used. Again, CONS is chosen because it makes lists and again its definition is

used to determine the correct arguments. This time the definition is correctly used and GRAPES

plans the concrete code as (CONS '(C D) NIL).

After mentally simulating this, GRAPES turns to the goal of mapping the concrete code to LISP.

The process of performing this mapping is quire ;.nalogous to the original mapping in Figure 11.

Again, CONS is mapped into CONS. The sare MAP.FIND operator as before maps (C D) into TWO.

An operator for special LISP symbols. like NIL, maps NIL onto itself. So, the final successful code

becomes:

(def addtwo
(lambda (one two)

(cons one (cons two nil))))

One interesting feature of this example is that SS is able to find her way.eventually to the correct

function without ever correcting the MAP-FIND operator, which will erroneously apply whenever it is

given a non-atomic data structure. Later protocols by SS indicated she still had the erroneous

MAP-FIND operator. Also, study of novice functions developed for class assignments, suggests that

-: this is a frequent bug. An interesting question concerns the source of this erroneous operator. It is

. hard to imagine that it was compiled from instruction or example. Presumably it was compiled from

an analysis by subjects that data structures should map in a symbol-by-symbol manner, substituting
U

terms in the new domain (in this case, function arguments) for terms in the old domain. If symbols like

parentheses are simply treated as default mappings, then one. would create an erroneous rule like

MAP-FIND. The rule usually works successfully because usually it is given atomic arguments to map.

This must make it all the more difficult to eliminate the rule once it gets into the programming

i il iliJJ iJ il | J i

1 30

repertoire.

4.3. Return to ONETWO

Figure 14 illustrates the behavior of the simulation and the subject when they returned to the

original ONETWO problem. The code they generated is given below:

(def onetwo
(lambda (list)

(cons (first list) (second list))))

Whereas the subject had taken an hour to code ADDTWO, she only took ten minutes to solve

ONETWO and most of that time was spent confirming what the functions FIRST ard SECOND did.

ONETWO is solved by the same method that ADDTWO is solved, but without any reheaisal of the

ONETWO method. Our assumption is that operators were compiled from this problem that

summarized the planning steps that went into the problem solution.

Insert Figure 14 about here

One of the operators that GRAPES compiled summarizes the problem so!ution illust'ated in Figure

13 that started with the goal of creating a list of a single element and resulted in the action of

CONSing that element with NIL. The compilation procedure recognizes that the various aspects of

the concrete example and its code are intermediate results and are not essential to the final answer.

It traces through thes steps to determine if there are any connections from the tcp goal to the final

CONSing action. The summary operator built is:

IF the goal is to code a list consisting of one argument
THEN CONS that argument with NIL

and set as a subgoal to code that argument

Similarly, an operator is compiled to correspond to the outer CONS in the ADDTWO function. It has

the form

IF the goal is to code into a list consisting of argument1 and argument2
THEN CONS argumenti into a list consisting of argument2

and set as subgoals to code argumenti
and to code a list consisting of argument2

I!

" WRITE
.t" ONE TWO

SOLVE SIMPLER PROBLEM S

WRITEWRITE
SootwoONETWe

COCODE CHECK
ONETWO V CODE

USE CONS TO ADD 1 TRY WRITTEN
1ST ELEMENT (ONETWO '(A a C))

FUNCTION

CHECK CHECK COMPARE
FIRST REST IV (A B)

USE FIT -USE CONS TO (A B)

CHECK[THECKCEC
ELEMENT V NIL V

USE SECOND

CHECK
LISG 14

! F I GLl R E 14"7

31

The compilation operator chooses to work on sections of the goal tree that have the following

properties

1. The segment begins with a coding goal such as "code a list of two arguments".

2. The intermediate steps are planning operations whose actions are not essential to the
final pi-oduct.

3. The terminating goals are also concerned with coding.

Compilation produces operators that directly connect 1 to 3 eliminating the intermediate passage

through 2.

4.4. Further Discussion of Compilation

* As discussed in Anderson (1982) there are two components to compilation-- composition and

procr..duralization. Composition produces a collapsing of steps and proceduralization eliminates

retriev al of information from long-term memory by building that information into the rule. Both

comrncrien~ts are involved in the compilation of the operators in the ONETWO example, but there are

other circumstances where the two might operate singly.

As an example of pure composition, suppose one wanted to add the first member of Listi to List2.

Then the following two operators would apply in sequence:

IF the goal is to add an element to List2
THEN CONS the element to List2

and set as subgoals to eeelithe element
and to Geek List2 code

coge
IF the goal is code the first element of List1

THEN use CAR of List1
and set as subgoal to code List1

These two rules could be composed together to produce

IF the goal is to add an element to List2
and the element is the first element of List1

THEN CONS the CAR of Listi with List2
and set as subgoals to code Listi
and to code List2

Such composition would collapse repeated sequences of coding operations to create macro-

mm m mp:

32

operators. The result would be a speed-up in coding.

Proceduralization can be illustrated in its pure form by the following example: in GRAPES there is a

production that will retrieve function definitions from long-term mmory and apply them:

IF the goal is to code a relation on an argument list
and there is a LISP function that codes this relation

THEN use this function with the argument list
and set as subgoals to check the coding of the argumont list

The second line of the condition might match, for instance, "CAR codes the first element of a list." If

this rule is proceduralized to eliminate the retrieval of the CAR definition, it becomes

IF the goal is to code the first element of a list
THEN use CAR of the list

and set as a subgoal to code the list

Now a production has been created which can directly recognize the application of CAR. This will

resuft in a reduction in the amount of !onx-term memory information that needs to be maintained in

working memory.

It needs to be emphasized that neither proceduralization nor composition eliminate the original

* production rules from which they were built. Rather the new compiled rules just serve as additional

supplemental rules to produce better performance in certain circumstances.

5. Significant Conclusions

"4 5.1. Types of Rule Formulation

While the following list is probably not exhaustive, we have identified some of the principal types of

rules used for programming:

5.1.1. Function Recognition The simplest kind of rule form is one that recognizes an existing LISP

function will achieve the current goal. So, for instance, corresponding to the function CONS, there is

a production:

IF the goal is to add an element to a list
THEN use CONS

Ul

33 S

and set as subgoals to check the list

and to check the element

These rules result in setting subgoals to check every argument to the function. There are a number of

ways that the goal of checking an argument can be achieved. Two of the simplest which result in

direct success, are given by the following rules:

IF the goal is to check an element
and it corresponds to a variable of the function

THEN use the variable

IF the goal is to check an element
and it has already been coded

THEN use the existing code.

However, if nothing else will work the following default rule will apply.6

IF the goal is to check an element
and the element is defined as having the relation to an argument list

THEN set as a subgoal to code the relation to the argument list

This basically provides a recursion point in GRAPES control structure because we have set a goal of

coding a relation which leads to subgoals of checking of the arguments to a .uncticin that achieves

the relation, which lead to new subgoals of finding a function, etc. The simp!est and most direct

function coding occurs when the problem has been so specified that a set of functions can be

hierarchically programmed such that correspond directly to the unpacking of the problem definition.

For instance, suppose the following problem were specified, given arguments List1 and List2.

The result is formed by adding X to the front of Y.

X is the first element of Listi.
Y is the tail of list List2.

Then the CONS rule would recognize its applicability to obtaining the result and set as subgoals to

check X and Y. CAR would be recognized as the code for X and the -, ibgoal would be to check List.

CDR would be recognized as the code for YXand the subgoal would be to check List2. The elements

List1 and List2 correspond to the argument variables of the function and the problem would

terminate. The resulting code would be (cons (car Listi) (cdr List2)). When functions can be coded 9

in this manner, the hierarchical flow of control in GRAPES perfectly reflects the hierarchical structure

nn nan mol =n~m il mllmin =lN

34 I

of LISP.

5.1.2. Problem Refinement One of the reasons uiy programming is not always as simple as

outlined above is that the relations in problem specification may not correspond to known LISP

functions. For instance, in the solution of REACHABLE GRAPES comes upon the need to code all the

nodes connected to a node. It does not know any LISP code corresponding to the relation connected

IQ. However, it does have the following definition

The nodes connected to a node appear as the second element of a sublist of graph
whose first element is the node.

The following rule can apply

IF the goal is to code a relationship
and there is a definition of that relationship

THEN set as subgoals to refine the relationship with the definition
and then to code the refined relationship p

in response to the goal to use the definition to refine, the following refined specification of the

o-b;:-coded object is placed in memory.

It is the second element of a sublist of GRAPH whose first element is the node.

At this point, CADR can recognize its applicability for retrieving the second element and a goal is set

to code the sublist of graph whose first element is the node. It is at this point where ASSOC can

recognize its applicability.

It needs to be stressed that subjects and GRAPES can fail to recognize the applicability of a

function simply because its specification does not match that of the function. Thus, a typical novice

"bug" in Drogramming is to write (APPEND (LIST X) Y) rather than (CONS X Y). This is presumably

because the subject specifies his goal as adding a list consisting of X to the list Y rather than inserting

X as the first element of Y. As another example, if subjects want the sublist of L beginning with
0

element X, they will use (MEMBER X L) but when they want the element after X in L, they might not

use (CDR (MEMBER X L)). This is because they do not represent their problem as "the tail of the list

beoinnina with X in L" but rather as "the list after X in L". Thus, the basic point is that programming
bbehavior is not invariant under paraphrase of the problem statement.

4 ~35

5.1.3. Use of Examples and Analogies Generating concrete examples is another method of

solving the roadblock of a relation that does to match a known function. We saw this in the ADDTWO

protocols. The subject did not know any function directly relevant to putting two elements into a list

but generated an example on paper of what the function would do. In parsing this example that she

had drawn on the sheet of paper, she noted the result was a list whose first element was the first

argument. This matched her definition of CONS.

Another method of solving the roadblock is to solve the problem by hand and try to map the steps

of the hand solution to LISP. So, for instance, our subject was asked to write a function that would

retrieve the third element of a list, when she only knew CONS, CDR, and CAR. She noted that she

was able to solve this by skipping two piaces in the list and reading the next element. She was then

able to translate skipping into taking the CDR and reading the next element into CAR. 0

The protocol of WC during REACHAB-LE is another example where a hand solution was used to

help guide the structuring of a LISP function. However, sometimes hand solutions do not map

naturally into LISP. A good example of this is POWERSET. One of the reasons why POWERSET is so

difficult is that subjects' hand solutions do not correspond to the easy LISP solution.

5.1.4. Programming Techniques All the previous methods rely on essentially function definitions, p

problem definitions, and prior knowledge and skills. However, part of the power in programming

comes from acquiring certain problem-solving methods that are specific to programming.

POWERSET illustrated the use of tail-recursion or CDR-recursion. This translated the goal of coding

the POWERSET relation into the goals of coding the relation between (POWERSET L) and

(POWERSET (CDR L)) and of coding the terminating condition. These proved to be much more

4 tractable problems. There are numerous other types of recursion techniques. For instance, there is

recursion in the integer N where the problem is decomposed into the goals of coding the relation

between (Function N) and (Function N-1) and of coding (Function 0). There are also numerous

iteration types which involve their own techniques. There are also various techniques for breaking a

I!

36 1

problem into subcases and coding each of these separately.

Presumably, it is in the possession of these techniques that the expert programmer is most I

advanced over the novice. This is an idea that has been suggested by a number of re-earchers

(Kahney & Eisenstadt, 1982; Soloway, 1980; Rich & Shrobe, 1978). Many of these techniques are

explicitly learned either through formal courses or informal interaction with other programmers.

However, we suspect that many more are also compiled from experience. That !s, the programmer

hits upon a problem, solves it with much search and effort, and compiles a rule that captures the

essence of the solution. There were a couple of modest examples of this in the protocols involving 3

ADDTWO.

5.2. Planning and Top-down Control

The major activity of both our subjects and GRAPES is better characterized as planning rather than

coding. Each of the operators involves an attempt to carry out or edt a plan. Some of these operators

had code associated with them but that code was just a LISP template attached to the .oal structure.

Coding occurs during the program planning and serves to help the subject remember the goal

structure of the plan. Thus, this analysis disagrees with the serial analysis of Brooks (1975) who

proposed that coding only took place after the plan was complete. The many pages of abortive code

written by our subjects is ample evidence that this is not always so.

It is also noteworthy that both our subjects and GRAPES generated this program in a top-down, 3

depth-first, left-to-right manner. The top-down characteristic corresponds to edicts of structured

programming; the depth-first characteristic does not. For instance, our subjects and GRAPES wrote

the helping function ADDTO for the POWERSET problem before completing the POWERSET

function. We think depth-first control is more. natural than breadth-first and this is one reason why it is

seeh in novices.

The basic flow of control in ACT* is depth-first and breadth-first control can only be implemented

- ', 4, . -- i =li~l' l~ i I l II i is lil -1

-4 37

by embedding it within the depth-first control. For instance, one might imagine implementing a

brendth-first queue in a depth-first iterative control which decompos.d doing the queue into d.ing

the first element and then doing the rest. For instance,

IF the general strategy is to implement breadth-first expansion
and the current goal is to execute a queue of goals

THEN set as a subgoal to do the first goal in the queue
and set as a second subgoal to do the rest

IF the general strategy is to implement breadth-first expansion
and a goal has just led to a set of subgoals
and there is a queue of subgoals

THEN append the new goals at the end of the queue
and set as a subgoal to execute the queue

There are a number of reasons why only more expert programmers would show breadth-first

contr:l. First, if it has to be implemented in a system that is basically depth-first, then it Is more

resource-denanding to pursue a breadth-first expansion rather than a depth-first expansion. The

no.,ice will have all of his resources taken up in the basics of programming and will not have capacity

left over to maintain the breadth-first queue. Second, successful breadth-first expansion requires a

;ense about what is a reasonable and achievable subgoal. The novice uses depth-first expansion as

one means of assessing whether he has just generated a reasonable subgoal. Third, breadth-first

expansion becomes more valuable when faced with larger problems. Our subjects never faced a

problem that involved more than two helping functions.

An interesting question concerns whetber the top-down programming we observed was a result of

the hierarchical structure of LISP or whether it would have been observed with other more linear

programming languages. Brooks (1975), looking at the coding of FORTRAN, found evidence for d

much more linear flow of control although each line of code seemed to be coded in a somewhat

top-down manner. Just as it is possible to implement a breadth-first discipline in a depth-first

architecture, so is it possible to implement a linear discipline in a top-down architecture or vice-versa.

At the current point in time, we cannot say whether the basic cognitive control structures differ in

!p

38

* different languages.

Finally, it should be noted that one effect of high levels of knowledge compilation is to make the

* programming of simple problems appear more linear and less top-down. That is, to the extent that the

* subject has rules which can recognize large portions of the problem as having known solution, his

behavior wjill be dominated by the linear execution of known code templates rather than hierarchical

problem-solving.

* 5.3. The Role of Analogy

Analogy plays an important role for novices who do not yet have a sufficient set of operatc.z to

directly solve the problem. Although not discussed here, a frequent category of analogy involves

* - trying to map one LISP function into another. We discussed two other examples of analogy in this

* paper. One involves solving a problem in a non -programng domain and then mapping the structure

of the solution into LIS~P code. This wr.3 illustrated in our first simulation of the REACHABLE protocol.

The other example of analogy was illustrated in the ONETWO simulation. Here the subject tried to

solve a problem of finding some code to type in at the top level that had the effect of the function.

Then she tried to map this into a LISP function.

It is typically the case that the structure of the old problem in analogy will not be identical to the-

structure of the new problem to be solved. Therefore, the task of mapping from one to another will

not be trivial but rather is a problem- solving task that must be informed by the nature of LISP. While

* there are exceptions, most of the mapping problems are solved on a trial and error fashion. The effort

- of our subject trying to map ((C D)) in the ONETWO problem is typical. We believe that students learn

how to map analogies to LISP just as they learn other programming skills.

We believe that more expert LISP programmers do not use analogy as frequently because they

have compiled out the need for analogy in many situations. Having not looked carefully at expert

programmers, this is somewhat a speculation, but it certainly corresponds with our own self 4

* observation as LISP programmers. It also is in accord with the GRAPES control structure, which

09
qI

prefers to solve a problen within LISP rather than iNoM. As more and more LISP operators are

acquired, there w:Il be less need to work outside of LISP.

5.4. Learning by Doing

Text or teacher instruction in LISP does provide the student with valuable facts, but it is only in the

course of performing the skill that the student acquires operators tht will lead to facile performance

of the skill. We have reviewed a number of examples of how the knowledge ccmpilaion prot;esses of

composition and proceduralization can create new operators. The ACT theory would predict that

these operators would become further tuned through generalization arid discrimiat:on. However,

apparently the first 30 hours of LISP acquisition is too brief to see these tuning prceesses at work.

5.5. Working Memory

One of the surprise discoveries in our research is how much of the problein-slving protoco!s are

given to recovering from errors of working memory. We estimate that about 50% cf the protocols are

given to recovering from such memory errors. There are two types of errois ob.ervable in the
P

protocols. There are errors that involve forgetting or misremembering subgo-ls or partial products.

Second, there are errors which involve retrieving the wrong item from long-term memory. Typically,

this second class of errors involves misremembering function definitions. The most frequent of theseIi
is using LIST when CONS is correct. In this paper we gave an analysis of how working memory failure

might underlie this memory failure. The proposal was that subjects lost some of the specification of

• their goal and retrieved a "simpler" function which matched the partial goal specification.

Again, we have not collected systematic data on the matter but we believe that such errors of

working memory are less frequent in experts. Certainly, our classroom studies have shown the

4
LIST/CONS confusion decreases with increasing expertise. Part of this improved working memory

may result from better problem organization and chunking. However, we also believe that subjects

simply have greater working memories for domains and concepts for which they have greater

familiarity. Anderson (1983) reviews evidence that more familiar nodes in a semantic network spread

.... '' -" L ...m m h , ib mm.lil - " -p

40

greater activation. Chase & Ericsson (1981) showed that with a great deal of practice, subjects can

increase their capacity fnr a list of numbers. They arque that the long-tcrm memories of theso

subjects become reliable extensions of their short-term memories.

I

I p

e -

4I 41

References

" Anderson, J.R. Acquisition of cognitive skill. Pzvcholorqical rFevicv, 1032, 9, 369-406.

Anderson, J.R. The Architecture of Cognition, Harvard University Press, 1983.

Barstow, D.R. An experiment on knowledge-based automatic programming, Artifiial Intelligence, 1979, 12,

73-119.

Brooks, R.E. A model of human cognitive behavior in writing code for computer programs. Unpublished

doctoral dissertation, Carnegie-mellon University, 1975.

Chase, W. G. and Ericsson, K. A. Skilled mernory. In J.R. Anderson (Ed) Cognitive Skll and Their

Acquisition. Hilisdale, NJ: Erlbaum, 1081.

Kant, E. and Newell, A. Problem solving techniques !or the design of algorithms. To appear in the

Proceedings of the Symposium on the empirical fcundations of information and software science.

Atlanta, GA, November, 1982.

Kahney, H. & Eisenstadt, M. Programmers' mental models of their programming tasks: The interaction of

real-word knowledge and programming knowledge. Proceedings of the Fourth Annual Conference 2f

the Cognitive Science Society, 1982.

Miller, G.A., Galanter, E., & Pribram, K.H. PlarMansd the Structure f Behavior, New York: Holt, 1960.

Norman, D.A. Categorization of action slips. Psvcholocical Review, 1981,8 , 1.15.

Rich, C. & Shrobe, H. Initial report on a LISP programmers' apprentice. IEEE Trans. Soft. En&, SE-4:6,

1978, 456-466.

* Sacerdoti, E.D. _A structure for plans n behavior, New York: Elsevier North-Holland, 1977.

m

42

Sauers, R. & Farrell, R. GRAPES User's Manual. Technical Report ONR-82-3.

Sikiossy, L. Let's Talk LISP, Englewood Cllts, NJ, 1976.

Soloway, E.M. From problems to programs via plans: The context and structure of knowledge for

introductory LISP prcgramming. Coins Technical Report 80-19, University of Massa'chusetts at

Amherst, 1980.

Winston, P.H. Artificial Intelliazence. Reading, MA: Addison-Wesley Publishing Company, 1977.

Winston, P.H. &Horn, B.K.P. LISP, Reading, MA: Addison-Wesley, 1981.

,43

Figure Captions

Figure 1 A spuciication of tho ",ACHA LE pc Al- pr~ zitcd to eubjects,

Figure 2 (a) A illustration of the flow of control in the hand solution of subject WC for the

REACHABLE problem.

(b) The subject's initial sketch of how this hand solution woold result in changes

to the list structure representation of the answer.

Figure 3 Hierarchical structure of subject 2's solution to the REACHABLE problem after p

rule R4 and before the transformation. Checks indicate successful goals and

question marks indicate goals yet to be tried.

I

Figure 4 Hierarchical structure of subject 2's solution to the REACHABLE problem after

rules R5-R9 have produced transformation in the goal tree of Figure 3. Checks

indicate successful goals and question marks indicate goals yet to be tried.

Figure 5 A specification of the POWERSET problem as presented to subjects.

Figure 6 A representation of the essential insight which underlies, solution of the

POWERSET problem.

Figure 7 A representation of the hierarchical goal structure controlling GRAPES' solution
!I

of the POWERSET problem.

Figure 8 A representation of the hierarchical goal structure controlling GRAPES' solution

of the ADDTO problem. This structure is a substructure of the goal structure in

Figure 7.

Figure 9 The goal structure at the beginning of the ADDTWO protocol where the subject

makes up an example.

i - ~ m.. , .. m mb n. . . . " - I

44

Figure 10 The goal structure at the point where the subject decides what top-level function

call is analogous to her desired program.

Figure 11 The goal structure governing the initial coding of ADDTWO.

Figure 12 The goal structure governing the testing and repair of the ADDTWO function.

Figure 13 The goal structure governing the episode in ADOTWO where the subject decides

how to put an element into a list.

Figure 14 The goal structure governing the coding of ONETWO after the successful coding

of ADDTWO.

U ,I

U.

S'

- . "-- - -" ... nam n mn mmm nlU '=,u~d n . .. " - m

This research is supported by contract N00014-81-C.0335 from the Offlice of NJaval Reseaarch. We

would like to thaInk Robin Jeffries bcth for many hours, of valuable discusciony r-.Ie-vant to the
C opn*en

-research and for her esison the paper.

r

41r

46 1

'Here and throughout the paper we will give English-like rendition of the production rules. A

technical speciticaticn of these rules (i.e., a compuI.ir ltiiqg) rcn 1;,, obt iincd by writinq to ,;. Also I

available is a users' manual (Sauers & Farrell, 1982) that describes the system.

2 Actually, we had a set of productions which generated the hierarchical plan in Figure 2a.

338efore these productions apply, a production must apply to refine the definition of connectedness

in terms of tre GRAPH formalism of the problem. This is discussed in Section 5.1.2.

4Lnfortunately, this asymmetry is confounded with the fact that 4LISTN is more mnemonic as a

function name than CONS. We are c.urrently doing an experiment with artificial function names that

attenots to mi the confound.

e5we are grateful to discussions with Robin Jeffries for helping our understanding of this problem.

Current work with Jeffr.es is being done on the nature of novice understanding of list structures.

6Freciuently in the preceeding discussions we have skipped over rules like this which provide the -

w s,
"interstitial" connections between the rules that were principly interested in.

Am
S.

•t

i "
•U

i

:MU/Anderson September 14, 1982 Page 1

F
Navy Navy

. 1 Dr. Robert Breaux 1 CAPT Richard L. Martin, USN
Code N-711 Prospective Commanding Officer
NAVTRAEQUIPCEN USS Carl Vinson (CVN-70)
Orlando, FL 32813 Newport News Shipbuilding and Drydock Co

Newport News, VA 23607
1 CDR Mike Curran

Office of Naval Research 1 Dr William Montague
800 N. Quincy St. Navy Personnel R&D Center
Code 270 San Diego, CA 92152
Arlington, VA 22217

1 Ted M. I. Yellen
1 DR. PAT FEDERICO Technical Information Office, Code 201

NAVY PERSONNEL R&D CENTER NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152 SAN DIEGO, CA 92152 9

1 Dr. John Ford 1 Library, Code P201L
Navy Personnel R&D Center Navy Personnel R&D Center
San Diego, CA 92152 San Diego, CA 92152

q 1 LT Steven D. Harris, MSC, USN 1 Technical Director r
Code 6021 Navy Personnel R&D Center
Naval Air Development Center San Diego, CA 92152
Warminster, Pennsylvania 18974

6 Commanding Officer
1 Dr. Jim Hollan -Naval Research Laboratory

Code 304 Code 2627

Navy Personnel R & D Center Washington, DC 20390
San Diego, CA 92152

1 Psychologist
1 CDR Charles W. Hutchins ONR Branch Office

Naval Air Systems Command Hq Bldg 114, Section D
AIR-34OF 666 Summer Street
Navy Department Boston, MA 02210
Washington, DC 20361

I Office of Naval Research
1 Dr. Norman J. Kerr Code 437

Chief of Naval Technical Training 800 N. Quincy SStreet
4 Naval Air Station Memphis (75) Arlington, VA 22217

Millington, TN 38054
5 Personnel & Training Research Programs

1 Dr. William L. Maloy (Code 458)
Principal Civilian Advisor for Office of Naval Research

Education and Training Arlington, VA 22217
Naval Training Command, Code OOA

Pensacola, FL 32508 1 Psychologist

ONR Branch Office

1030 East Green Street
Pasadena, CA 91101

6

6

MU/Anderson September 14, 1982 Page 2

Navy Navy

1 Special Asst. for Education and 1 Mr John H. Wolfe
Training (OP-O1E) Code P310

Rm. 2705 Arlington Annex U. S. Navy Personnel Research and
Washingt-n, DC 20370 Development Center

San Diego, CA 92152
1 Office of the Chief of Naval Operation!

Research Development & Studies Branch
(OP-115)

Washington, DC 20350

I LT Frank C. Petho, MSC, USN (Ph.D)
Selection and Training Research Division
Human Performance Sciences Dept.
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508

1 Dr. Gary Poock
Operations Research Department
Code 55PK
Naval Postgraduate School •
Monterey, CA 93940

1 Dr. Worth Scanland, Director
Research, Development, Test & Evaluation
N-5
Naval Education and Training Command S
NAS, Pensacola, FL 32508

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group

(TAEG)
Dept. of the Navy 0
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

am m m ai~m,*llh m..

:MU/Anderson September 14, 1982 Page 3 "

Army Air Force

1 Technical Director I Dr. Earl A. Alluisi
U. S. Army Research Institute for the HQ, AFHRL (AFSC)

Bhavioral and Social Sciences Brooks AFB, TX 78235
5001 Eisenhower Avenue
Alexandria, VA 22333 1 Dr. Alfred R. Fregly

AFOSR/NL, Bldg. 410]
1 Mr. James Baker Bolling AFB

Systems Manning Technical Area Washington, DC 20332
Army Research Institute
5001 Eisenhower Ave. 1 Dr. Genevieve Haddad
Alexandria, VA 22333 Program Manager

Life Sciences Directorate
1 Dr. Beatrice J. Farr AFOSR

U. S. Army Research Institute Bolling AFB, DC 20332
5001 Eisenhower Avenue "

Alexandria, VA 22333 2 3700 TCHTW/TTGH Stop 32
:, Sheppard AFB, TX 76311

1 .DR. FRANK J. HARRIS
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE

ALEXANDRIA, VA 22333

1 Dr. Michael Kaplan

U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil'. Jr.
Attn : PERI-OK

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sa~mor
U. S. Army Research Institute for the

Behavioral and Social Sciences
5001 Eisenhower Avenue

4Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute

5001 Eisenhower Avenue
Alexandria, VA 22333

4p

,MU/Anderson September 14, 1982 Page 4

Marines CoastGuard

H. William Greenup 1 Chief, Psychological Reserch Branch
Education Advisor (E031) U. S. Coast Guard (G-P-1/2/TP42)
Education Center, MCDEC Washington, DC 20593
Quantico, VA 22134

1 Special Assistant for Marine
Corps Matters

Code lOOM
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-i) S
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380

5-

'w

0

S

S

:'U/Anderson September 14, 1982 Page 5

5

Other DoD Civil Govt

12 Defense Technical Information Center 1 Dr. Paul G. Chapin

Cameron Station, Bldg 5 Linguistics Program

Alexandria, VA 22314 National Science Foundation
Attn: TC Washington, DC 20550

Military Assistant for Training and 1 Dr. Susan Chipman

Personnel Technology Learning and Development
Office of the Under Secretary of Defense National Institute of Education

for Research & Engineering 1200 19th Street NW
Room 3D129, The Pentagon Washington, DC 20208
Washington, DC 20301

1 Dr. John Mays
DARPA National Institute of Education
1400 Wilson Blvd. 1200 19th Street NW
Arlington. VA 22209 Washington, DC 20208

1 William J. McLaurin
66610 Howie Court
Camp Springs, MD 20031

S

1 Dr. Arthur Melmed
National Intitute of Education
1200 19th Street NW
Washington, DC 20208

I Dr. Andrew R. Molnar
Science Education Dev.

and Research
National Science Foundation
Washington, DC 20550

1 Dr. Joseph Psotka •
National Institute of Education
1200 19th St. NW
Washington ,DC 20208

1 Dr. Frank Withrow

U. S. Office of Education S
400 Maryland Ave. SW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes

National Science Foundation S

Washington, DC 20550

. : -11 i i i l i il i

"MU/Anderson September 14, 1982 Page 6

Non Govt Non Govt

1 Anderson, Thomas H., Ph.D. 1 DR. JOHN F. BROCK
Center for the Study of Reading Honeywell Systems & Research Center
174 Children's Research Center (MN 17-2318)

* 51 Gerty Drive 2600 Ridgeway Parkway
* Champiagn. IL 61820 Minneapolis, MN 55413

1 Dr. John Annett 1 Dr. John S. Brown
Department of Psychology XEROX Palo Alto Research Center
University of Warwick 3333 Coyote Road
Coventry CV4 7AL Palo Alto, CA 94304
ENGLAND

1 Dr. Bruce Buchanan
1 1 psychological research unit Department of Computer Science

Dept. of Defense (Army Office) Stanford University
Campbell Park Offices Stanford, CA 94305
Canberra ACT 2600, Australia

1 DR. C. VICTOR BUNDERSON
1 Dr. Alan Baddeley WICAT INC.

Medical Research Council UNIVERSITY PLAZA, SUITE 10
Applied Psychology Unit 1160 So. STATE Sr.

15 Chaucer Road OREM, UT 84057
Cambridge CB2 2EF
ENGLAND 1 Dr. Pat Carpenter

Department of Psychology
1 Dr. Patricia Baggett Carnegie-Mellon University

Department of Psychology Pittsburgh, PA 15213 U
University of Colorado
Boulder, CO 80309 1 Dr. John B. Carroll

Psychometric Lab
1 Dr. Jonathan Baron Univ. of No. Carolina

Dept. of Psychology Davie Hall 013A
University of Pennsylvania Chapel Hill, NC 27514
3813-15 Walnut St. T-3
Philadlphia, PA 19104 1 Dr. William Chase

Department of Psychology
1 Mr Avron Barr Carnegie Mellon University

Department of Computer Science Pittsburgh, PA 15213
Stanford University
Stanford4 CA 94305 1 Dr. Micheline Chi

Learning R & D Center
1 Liaison Scientists University of Pittsburgh

Office of Naval Research, 3939 O'Hara Street
Branch Office . London Pittsburgh, PA 15213
Box 39 FPO New York 09510

1 Dr. William Clancey
1 Dr. Lyle Bourne Department of Computer Science

Department of Psychology Stanford University
University of Colorado Stanford, CA 94305
Boulder, CO 80309

S

?U/Anderson September 14, 1982 Page 7

Non Govt Non Govt

1 Dr. Allan M. Collins 1 Dr. John R. Frederiksen
Bolt Beranek & Newman, Inc. Bolt Beranek & Newman
50 Moulton Street 50 Moulton Street S

* Cambridge, Ma 02138 Cambridge, MA 02138

1 Dr. Lynn A. Cooper 1 Dr. Alinda Friedman
LRDC Department of Psychology
University of Pittsburgh University of Alberta
3939 O'Hara Street Edmonton, Alberta
Pittsburgh, PA 15213 CANADA T6G 2E9

1 Dr. Meredith P. Crawford 1 Dr. R. Edward Geiselman
American Psychological Association Department of Psychology
1200 17th Street, N.W. University of California
Washington, DC 20036 Los Angeles, CA 90024 0

1 Dr. Kenneth B. Cross 1 DR. ROBERT GLASER

Anacapa Sciences. Inc. LRDC
P.O. Drawer Q UNIVERSITY OF PITTSBURGH
Santa Barbara, CA 93102 3939 O'HARA STREET

PITTSBURGH, PA 15213

1 LCOL J. C. Eggenberger

DIRECTORATE OF PERSONNEL APPLIED RESEARC 1 Dr. Marvin D. Glock

NATIONAL DEFENCE HQ 217 Stone Hall
101 COLONEL BY DRIVE -Cornell University
OTTAWA, CANADA KIA OK2 Ithaca, NY 14853 5

1 Dr. Ed Feigenbaum 1 Dr. Daniel Gopher
Department of Computer Science Industrial & Management Engineering

Stanford University Technion-Israel Institute of Technology
. Stanford, CA 94305 Haifa

ISRAEL.
1 Mr. Wallace Feurzeig

Bolt Beranek & Newman, Inc. 1 DR. JAMES G. GREENO
50 Moulton St. LRDC

Cambridge, MA 02138 UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET,

1 Dr. Victor Fields PITTSBURGH, PA 15213

Dept. of Psychology
Montgomery College 1 Dr. Harold Hawkins

Rockville, MD 20850 Department of Psychology
University of Oregon

1 Univ. Prof. Dr. Gerhard 'Fischer Eugene OR 97403
Liebiggasse 5/3
A 1010 Vienna 1 Dr. Barbara Hayes-Roth

AUSTRIA The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

I p i

'hU/Anderson September 14, 1982 Page 8

Non Govt Non Govt

Dr. Frederick Hayes-Roth 1 Dr. David Kieras
The Rand Corporation Department of Psychology S
1700 Main Street University of Arizona
Santa Monica, CA 90406 Tuscon, AZ 85721

Dr. Dustin H. Heuston 1 Dr. Stephen Kosslyn
Wicat, Inc. Harvard University
Box 986 Department of Psychology
Orem, UT 84057 33 Kirkland Street

Cambridge, MA 02138
Dr. James R. Hoffman
Department of Psychology 1 Dr. Marcy Lansman
University of Delaware Department of Psychology, NI 25
Newark, DE 19711 University of Washington

Seattle, WA 98195
Dr. Kristina Hooper
Clark Kerr Hall 1 Dr. Jill Larkin
University of California Department of Psychology
Santa Cruz, CA 95060 Carnegie Mellon University

Pittsburgh, PA 15213

Glenda Greenwald, Ed.
"Human Intelligence Newsletter" 1 Dr. Alan Lesgold
P. 0. Box 1163 Learning R&D Center
Birmingham, MI 48012 University of Pittsburgh

Pittsburgh, PA 15260
.1 Dr. Earl Hunt p

Dept. of Psychology 1 Dr. Michael Levine
University of Washington Department of Educational Psychology
Seattle, WA 98105 210 Education Bldg.

University of Illinois
Dr. Ed Hutchins Champaign, IL 61801
Navy Personnel R&D Center
San Diego, CA 92152 1 Dr. Mark Miller

TI Computer Science Lab
Dr. Greg Kearsley C/O 2824 Winterplace Circle
HumRRO Plano, TX 75075
300 N. Washington Street
Alexandria, VA 22314 1 Dr. Allen Munro

Behavioral Technology Laboratories
Dr. Steven W. Keele 1845 Elena Ave., Fourth Floor
Depto. of Psychology Redondo Beach, CA 90277
University of Oregon
Eugene, OR 97403 1 Dr. Donald A Norman

Dept. of Psychology C-009
Dr. Walter Kintsch Univ. of California, San Diego
Department of Psychology La Jolla, CA 92093
University of Colorado
Boulder, CO 80302

S

L :. " - --- : - -:- - i I l l l i l..

:MU/Anderson ptmbr 4 82Page 9
on Septme r 14 1082. " I. . I _,

Non Govt Non Govt

1 Committee on Human Factors 1 Dr. Mike Posner

JH 811 Department of Psychology
2101 Constitution Ave. NW University of Oregon
Washington, DC 20418 Eugene OR 97403

I Dr. Seymour A. Papert 1 MINRAT M. L. RAUCH
Massachusetts Institute of Technology P II 4
Artificial Intelligence Lab BUNDESMINISTERIUM DER VERTEIDIGUNG

545 Technology Square POSTFACH 1328
Cambridge, MA 02139 D-53 BONN 1, GERMANY

1 Dr. James A. Paulson 1 Dr. Fred Reif

Portland State University SESAME
* P.O. Box 751 c/o Physics Department

Portland, OR 97207 University of California
Berkely, CA 94720

I Dr. James W. Pellegrino
University of California, 1 Dr. Lauren Resnick

Santa Barbara LRDC
Dept. of Psychology University of Pittsbu-gh
Santa Barabara, CA 93106 3939 O'Hara Street r

-Pittsburgh, PA 15213
1 MR. LUIGI PETRULLO

2431 N. EDGEWOOD STREET 1 Mary Riley
ARLINGTON, VA 22207 -LRDC

University of Pittsburgh
1 Dr. Richard A. Pollak 3939 O'Hara Street

Director, Special Projects Pittsburgh, PA 15213
Minnesota Educational Computing Consorti
2520 Broadway Drive 1 Dr. Andrew M. Rose
St. Paul,MN 55113 American Institutes for Research

1055 Thomas Jefferson St. NW
1 Dr. Martha Polson Washington, DC 20007

Department of Psychology
Campus BOx 346 1 Dr. Ernst Z. Rothkopf .

University of Colorado Bell Laboratories
.Boulder, CO 80309 600 Mountain Avenue

1 DMurray Hill, NJ 07974
1 DR. PETER POLSON

DEPT. OF PSYCHOLOGY 1 Dr. David Rumelhart
UNIVERSITY OF COLORADO Center for Human Information Processing

BOULDER, CO 80309 Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. Steven E. Poltrock
Department of Psychology 1 DR. WALTER SCHNEIDER
University of Denver DEPT. OF PSYCHOLOGY
DenverCO 80208 UNIVERSITY OF ILLINOIS

CHAMPAIGN, IL 61820

*I

*]

: :MU/Anderson September 14, 1982 Page 10

Non Govt Non Govt

1 Dr. Alan Schoenfeld 1 Dr. Robert Sternberg

Department of Mathematics Dept. of Psychology p
Hamilton College Yale University
Clinton, NY 13323 Box 11A, Yale Station

New Haven, CT 06520

1 DR. ROBERT J. SEIDEL N
INSTRUCTIONAL TECHNOLOGY GROUP 1 DR. ALBERT STEVENS

HUMRRO BOLT BERANEK & NEWMAN, INC.
300 N. WASHINGTON ST. 50 MOULTON STREET
ALEXANDRIA, VA 22314 CAMBRIDGE, MA 02138

1 Committee on Cognitive Research 1 David E. Stone, Ph.D.

Dr. Lonnie R. Sherrod Hazeltine Corporation
Social Science Research Council 7680 Old Springhouse Road
605 Third Avenue McLean, VA 22102
New York, NY 10016

1 DR. PATRICK SUPPES

1 Dr. David Shucard INSTITUTE FOR MATHEMATICAL STUDIES IN
Brain Sciences Labs THE SOCIAL SCIENCES
National Jewish Hospital Research Center STANFORD UNIVERSITY

National Asthma Center STANFORD, CA 94305
Denver, CO 80206

1 Dr. Kikumi Tatsuoka
1 Robert S. Siegler Computer Based Education Research

Associate Professor Laboratory
Carnegie-Mellon University 252 Engineering Research Laboratory
Department of Psychology University of Illinois
Schenley Park Urbana, IL 61801
Pittsburgh, PA 15213

1 Dr. John Thomas
1 Dr. Edward E. Smith IBM Thomas J. Watson Research Center

Bolt Beranek & Newman, Inc. P.O. Box 218
50 Moulton Street Yorktown Heights, NY 10598
Cambridge, MA 02138

1 DR. PERRY THORNDYKE

1 Dr. Robert Smith THE RAND CORPORATION

Department of Computer Science '1700 MAIN STREET
Rutgers University SANTA MONICA, CA 90406

New Brunswick, NJ 08903
1 Dr. Douglas Towne

1 Dr. Richard Snow Univ. of So. California
School of Education Behavioral Technology Labs
Stanford University 1845 S. Elena Ave.
Stanford, CA 94305 Redondo Beach, CA 90277

1 Dr. Kathryn T. Spoehr 1 Dr. Benton J. Underwood
Pscyhology Department Dept. of Psychology
Brown University Northwestern University
Providence, RI 02912 Evanston, IL 60201

'
l

:MI.! I Anderson September 14, 1982

Non Covt

DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367

Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monica, CA 90~06

DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66oqq

Dr. Christopher Wickens
Department of Psycholoay
University of Illinois
Champaign, IL 61820

Frank R. Yekovich
School or Education
Catholic University

Page 11

. ,.

